Operating Instructions

Micrometer Adjustable Torque Wrench Series (SDR, SD, & CCM Models)

Sturtevant Richmont micrometer adjustable torque wrenches are designed & manufactured to provide consistent and rapid user-selectable torque in a variety of manufacturing and maintenance fastener tightening operations. They meet or exceed ASME B107.14 and ISO 6789. These wrenches are accurate to +/- 4% of indicated value from 20% to 100% of rated (marked) capacity.

The Ratchet and Square Drive tools operate & deliver torque in one direction only, as indicated by the arrow on the case (Figure 1). The wrench will not indicate torque but can be used in the reverse direction, provided you do not exceed the rated capacity of the wrench. The Dovetail series can be used in either direction with the same accuracy by removing the head and turning the wrench 180 degrees.

Cautions
- Always wear appropriate safety equipment when using any hand tool.
- Only use hand tools for their intended purpose.
- Never exceed the rated capacity of the tool.

Capacity and Range
The range of each tool is from 20% to 100% of the rated capacity of the tool. The rated capacity of the tool is the highest value shown on the major scale in the unit of measure for the tool.

Torque Setting
The case (Figures 1 & 2) is engraved with graduations (major scale) and the aluminum grip with increments (minor scale). The torque setting is the sum of the largest graduation below the end of the aluminum grip plus the increment aligned with the centerline of the graduations. One complete revolution of the grip is equal to one graduation on the major scale.

To set the desired torque, rotate the grip lock (Figure 3) in the unlock direction until the grip can be readily rotated. Next, grasp the case firmly with one hand and rotate the rubber grip clockwise (CW) to increase torque or counter-clockwise (CCW) to decrease torque. Once the desired torque has been set, lock the grip lock by rotating it in the lock direction until it stops. Recheck torque to confirm proper setting.
Interchangeable Head Capacity
Always use an interchangeable head with sufficient capacity for the torque to be applied. Each interchangeable head is marked with the maximum capacity of the head. For head having a fastener engagement size in English units of measure, the capacity is always given in inch-pounds. For those with fastener engagement size given in SI units, the capacity is always given in Newton-metres.

Operating the Wrench
1) Attach appropriate fastener engagement device (socket, S/R interchangeable head, etc.) to the wrench. For SDR tools, assure ratchet direction is set properly before proceeding. For CCM tools, make certain the interchangeable head has the same lever length as was used during calibration. Warning: It is imperative the interchangeable head maintain the same lever length as was used during calibration. Failure to maintain lever length will cause applied torque to differ from set torque.
2) Engage the fastener while holding the wrench perpendicular to the axis of the fastener.
3) Grip the center of the hand grip and with a steady force pull in the direction of the arrow on the case.
4) Continue to pull the wrench until an audible/tactile impulse (the “click”) is experienced.
5) Stop pulling immediately to prevent over torquing.

Care & Cleaning
Always store wrench in a clean dry environment. Do Not immerse wrench in cleaning fluids. It is further suggested that if the wrench is to sit idle for very long periods of time it should be set to its lowest setting.

Calibration Instructions
Required Equipment: Torque analyzer or tester accurate to 1% of indicated value or better, four (4) hex keys (5/64", 3/32", 5/32", & 5/16"), and a torch*. *Required only if solder used on grip lock or access screw.

Procedure:
1) Determine current performance to standard.
 a) Test wrench on torque analyzer/tester.
 i) Cycle wrench at 50% of capacity a minimum of three times.
 ii) Set wrench to 20% of capacity, cycle three (3) times and record readings.
 iii) Set wrench to 60% of capacity, cycle three (3) times and record readings.
 iv) Set wrench to 100% of capacity, cycle three (3) times and record readings.
 b) Compare readings to tolerance for each torque level.
 i) If wrench is within tolerance, it may be returned to service.
 ii) If wrench is out-of-tolerance, go to next step.
2) Calibrate wrench.
 a) Remove rubber grip.
 b) If solder was used to preclude access to grip lock and or access screw, remove solder. Do NOT touch grip, grip lock, or screw until cool. If solder not used, go directly to next step.
 c) Remove access screw.
 d) Loosen setscrew in grip lock until it protrudes approximately 1/8” above top of lock.
 e) Depress grip lock to remove pressure on retaining ring.
 f) Remove retaining ring.
 g) Remove grip lock and hex stem lock.
 h) Rotate aluminum grip to 100% of capacity (highest graduation + 0 on increment).
 i) Place wrench on torque analyzer/tester, click several times, note values obtained.
 j) Adjust wrench.
 i) If readings are above tolerance, turn tang adjustment screw slightly CW, then repeat step 2i.
 ii) If readings are below tolerance, turn tang adjustment screw slightly CCW, then repeat step 2i.
 iii) If readings are in tolerance, go to next step.
k) Rotate grip and adjust torque to 20% of capacity (lowest graduation + 0 on increment).
l) Place wrench on torque analyzer/tester, click several times, note values obtained.
 i) If out-of-tolerance, go to next step.
 ii) If in tolerance, check at 60% and 100% of capacity.
m) Rotate grip CW or CCW enough clicks to bring into tolerance at 20% of scale.
n) Lock load screw by rotating internal 5/32" internal hex screw in the CCW direction.
o) Use 5/16" hex key to remove lock plug by rotating in the CCW direction.
p) Rotate grip until it aligns with lowest graduation (20% of capacity).
q) Replace lock plug and unlock load screw.
r) Return to step 2h.
s) Replace hex stem, grip lock, and retaining ring.
t) Tighten setscrew in grip lock until it lightly touches bottom, then back off ¾ to 1 turn.
u) Replace access screw and rubber grip.

Use of Extensions and Adapters

Any style or type of interchangeable head or other device added to the wrench that changes the lever length after the tool has been calibrated will make the torque wrench settings inaccurate.

The CCM tools arrive calibrated using interchangeable heads that have a common centerline (CCL) as given in the table below. If a head, extension, adapter or other attachment having a different CCL is to be used with the tool, the tool must be recalibrated using a head, extension, adapter or attachment that matches that to be used. This must be done before the tool is used with the item of a different CCL or the tool will be inaccurate.

<table>
<thead>
<tr>
<th>Models</th>
<th>CCL Used in Factory Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCM 300, CCM 400, CCM 400 Nm, CCM 600 Nm</td>
<td>3 7/8"</td>
</tr>
<tr>
<td>All other CCM models</td>
<td>1 7/16"</td>
</tr>
</tbody>
</table>

Certification, Service and Repair

For service and calibration, contact us using the information on the front of this document, or send us the tool and your written instructions. All calibrations are performed in an ISO/IEC 17025 Accredited Calibration Laboratory, and certifications provide tabulated test data and traceability to national standards.